

Quercetin

Common Indications

- Allergies
- Upper respiratory tract infections (URTIs)
- Asthma
- Diabetes complications
- Cataracts
- Metabolic syndrome
- Cardiovascular disease hypertension, atherosclerosis
- Enhancing performance
- Chronic prostatitis
- Sarcoidosis
- Aphthous ulcers

General Comments

Quercetin is a polyphenolic bioflavonoid or more specifically a flavanol. Bioflavonoids are commonly found in many plants are well reported in the literature to have antioxidant properties. Quercetin and the other bioflavonoids cannot be synthesized by humans. It usually has poor solubility and instability so there are several research efforts to modify it into different forms, such as liposomes or nanoparticles, that increase solubility and bioavailability⁴⁰

Benefits & Mechanism of Action

Antioxidant/pro-oxidant

- Phenolic antioxidant that inhibits lipid peroxidation, which protects the lens of the eye² and renal tubular epithelial cells from antioxidant-induced injury⁵
- May be due to free radical scavenging, metal chelation, enzyme inhibition or the induction of protective enzymes
- Has a 3.5-fold higher antioxidant capacity than curcumin
- Antioxidant activity may be related to reducing glutathione (GSH) levels³. If GSH is absent, potentially harmful oxidation products may be produced, so it is important that GSH levels be maintained while supplementing with quercetin¹
- May help protect lungs from oxygen-derived free radicals released during an influenza

infection⁴

Anti-inflammatory

- Modulates neutrophil function, prostanoid synthesis, cytokine production and inducible nitric oxide synthase (iNOS) expression by inhibiting the neutrophil factor-kappa-B pathway^{6,8,9}
- Equally or more effective as trans-resveratrol in reducing TNF-alpha mediated inflammation and insulin resistance⁷

Antiviral

- Reduces infectivity and intracellular replication of herpes simplex virus-1, poliovirus type 1, parainfluenza virus type 3, and respiratory syncytial virus in vitro¹¹
- Can block the replication of rhinovirus, which is the virus responsible for the common cold¹⁰

Immunomodulation

• Induces Th1-derived cytokines, which promotes cellular immunity, and inhibits Th2-derived cytokines, which can have a negative effect on cellular immunity¹²

Antiallergy

- Inhibits IL-8 and TNF release from LAD2 mast cells stimulated by substance P¹⁸
- Stabilizes mast cells, neutrophils and basophils inhibiting antigen and mitogen-induces histamine release^{13,6, 5,14,16,17}

Cardioprotective

- Chronic treatment lowers blood pressure and restores endothelial function^{20,23}
- Related to the vasorelaxant, anti-inflammatory, and antioxidant properties and inhibition of vascular smooth-muscle cell proliferation and migration^{19,22}
- Inhibits platelet aggregation and signaling and thrombus formation²¹

Neuroprotective

- Protects neuronal cells from oxidative stress-induced neurotoxicity²⁶ and inflammatoryrelated neuronal injury²⁵
- Important that it is a low dose because higher doses may be neurotoxic²⁴

Gastroprotective

• In an animal model it inhibits hyperproliferation of gastric mucosal cells treated with chronic oral ethanol²⁸

- Reduces mast cells and size of gastric erosions²⁷
- Inhibits gastric tumor production by inducing cell cycle arrest and promotes cell death²⁹

Hepatoprotective

- Protects the liver from oxidative damage and may reduce biliary obstruction^{30,31}
- Protects hepatocytes from ethanol-induced oxidative stress³²

Antidiabetic

• Enhances bioavailability of endothelium-derived nitric oxide and reduces blood glucose levels and oxidative stress³³

Prevention of bone loss

- Affects osteoclastogenesis and regulates hormones and cytokines³⁵
- Can inhibits osteoblasts, so more research needs to be done to see if it increases or decreases bone mass³⁴

Dose:

Standard³⁶

• 200-1500 mg daily in divided doses

Specific

- Chronic prostatitis: 500 mg twice daily (with bromelain and papain)
- Acute allergies: 2 g every 2 hours x 2 days (most often with vitamin C)
- Chronic allergies: 2 g daily
- Asthma: 2 g daily as an adjunct
- Sarcoidosis: 2 g daily of the oral form
- Cardiovascular disease prevention: 3 x 200 mL of black tea/day or 2 medium sized apples/day
- Hypertension: 150 mg/day x 6 weeks
- Aphthous ulcers: topical cream 3 times a day

Food Sources

• Many foods including apples, berries (blackcurrants, lingonberries and bilberries), beans, black tea, broccoli, grapes, green tea, onions, and red wine^{37,39}

• The daily intake from food sources is 5-40 mg but can be up to 500 mg, especially if the peel of a fruit is consumed³⁸

Cautions & Side Effects:

May have some antithyroid properties that can inhibit thyroid cell growth by inhibiting insulinmodulated phosphatidylinositol 3-kinase-Akt kinase activity. Use with CAUTION in thyroid disease⁴⁰.

Generally well tolerated with low toxicity when administered orally or intravenously but there are some rare adverse effects of⁴¹:

- Nausea
- Dyspnea
- Headache
- Mild tingling of extremities

Interactions (mainly from CYP3A4 induction):

- Iron
- Adriamycin
- Cisplatin
- Cyclosporin
- Digoxin
- Diltiazem
- Doxorubicin

- Haloperidol
- Paclitaxel
- Paracetamol
- Pioglitazone
- Quinolone antibiotics
- Saquinavir
- Stibanate

References:

Antioxidant/pro-oxidant

- 1. Boots AW et al. Oxidized quercetin reacts with thiols rather than with ascorbate: implication for quercetin supplementation. Biochem Biophys Res Common 308.3 (2003): 560-565.
- 2. Cornish KM, et al. Quercetin metabolism in the lens: role in inhibition of hydrogen peroxide induced cataract. Free Radic Biol Med 33.1 (2002): 63-70.
- 3. Ferraresi R et al. Essential requirement of reduced glutathione (GSH) for the anti-oxidant effect of the flavonoid quercetin. Free Radic Res 39.11 (2005): 1249-1258.
- 4. Kumar P et al. Effect of quercetin supplementation on lung antioxidants after experimental influenza virus infection. Exp Lung Res 31.5 (2005): 449-459.
- 5. Pietruck F et al. Effect of quercetin on hypoxic injury in freshly isolated rat proximal tubules. J Lab Clin Med 142.2 (2003): 106-112.

Anti-inflammatory

- 6. Busse W et al. Flavinoid modulation of human neutrophil function. J Allergy Clin Immunol 73.6 (1984): 801-809
- Chuang CC et al. Quercetin is equally or more effective than resveratrol in attenuating tumor necrosis factor-{alpha}-mediated inflammation and insulin resistance in primary human adipocytes. Am J. Clin. Nutr. 92.6 (2010): 1511-21.
- 8. Comalada M et al. In vivo quercetin anti-inflammatory effects involves release of quercetin, which inhibits inflammation though downregulation of the NF-kappaB pathway. Eur J Immunol 35.2 (2005): 584-592.
- 9. Morikawa K et al. Inhibitory effect of quercetin on carrageenan-induced inflammation in rats. Life Sci 74.6 (2003): 709-721.

Antiviral

- 10. Ganesan S et al. Quercetin inhibits rhinovirus replication in vitro and in vivo. Antiviral Res. 94.3(2012):258-71.
- 11. Kaul T, et al. Antiviral effect of flavonoids on human viruses. J Med Virol 15.1 (1985): 71-79.

Immunomodulation

 Nair MPN et al. The flavonoid, quercetin, differentially regulates Th-1 (IFN(gamma)) and Th-2 (IL4) cytokine gene expression by normal peripheral blood mononuclear cells. Biochim Biophys Acta Mol Cell Res 1593.1 (2002): 29-36

Antiallergy

- Blackburn W, et al. The bioflavonoid quercetin inhibits neutrophil degranulation, superoxide production, and the phosphorylation of specific neutrophil proteins. Biochem Biophys Res Common 144.3 (1987): 1229-1236
- 14. Middleton C, et al. Quercetin: an inhibitor of antigen-induced human basophil histamine release. J Immunol 127 (1981): 546-550.
- 15. Middleton E, Drzewiecki G. Effects of flavonoids and transitional metal cations on antigen-induced histamine release from human basophils. Biochem Pharmacol 31.7 (1982): 1449-1453.
- 16. Ogasawara H et al. The role of hydrogen peroxide in basophil histamine release and the effect of selected flavonoids. J Allergy Clin Immunol 78 (1996): 321-328.
- 17. Pearce FL, et al. Mucosal mast cells: effect of quercetin and other flavonoids on antigen-induced histamine secretion from rat intestinal mast cells. J Allergy Clin Immunol 73.6 (1984): 819-823.
- 18. Weng Z et al. Quercetin is more effective than cromolyn in blocking human mast cell cytokine release and inhibits contact dermatitis and photosensitivity in humans PLoS ONE.7.3 (2012); e33805

Cardioprotective

- 19. Alcocer F et al. Quercetin inhibits human vascular smooth muscle cell proliferation and migration. Surgery 131.2 (2002): 198-204.
- 20. Garcia-Saura MF et al. Effects of chronic quercetin treatment in experimental renovascular hypertension. Mol Cell Biochem 270.1-2 (2005): 147-155.
- 21. Hubbard GP et al. Ingestion of quercetin inhibits platelet aggregation essential components of the collagen-stimulated platelet activation pathway in humans. J Thromb Haemost 2.12 (2004): 2138-2145.
- Moon SK et al. Quercetin exerts multiple inhibitory effects on vascular smooth muscle cells: role of ERK1/2, cell-cycle regulation, and matrix metalloproteinase-9. Biochem Biophys Res Commun 301.4 (2003): 1069-1078.
- 23. Sanchez M et al. Quercetin downregulates NADPH oxidase, increases eNOS activity and prevents endothelial dysfunction in spontaneously hypertensive rats. J Hypertens 24.1 (2006): 75-84.

- 24. Ansari MA et al. Protective effect of quercetin in primary neurons against Abeta (1-42): relevance to Alzheimer's disease. J Nutr Biochem 20.4 (2008): 269-275.
- 25. Chen JC et al. Inhibition of iNOS gene expression by quercetin is mediated by the inhibition of I(kappa)B kinase, nuclear factor-kappa B and STAT1, and depends on heme oxygenase-1 induction in mouse BV-2 microglia. Eur J Pharmacol 521.1-3 (2005): 9-20.
- 26. Heo HJ, Lee CY. Protective effects of quercetin and vitamin C against oxidative stress-induced neurodegeneration. J Agric Food Chem 52.25 (2004): 7514-7517

Gastroprotective

- 27. Kahraman A et al. The antioxidative and antihistaminic properties of quercetin in ethanol-induced gastric lesions. Toxicology 183.1-3 (2003): 133-142.
- 28. Liu JL et al. Effects of quercetin on hyper-proliferationn of gastric mucosal cells in rats treated with chronic oral ethanol through the reactive oxygen species-nitric oxide pathway. World J Gastroenterol 14.20 (2008): 3242-3248.
- 29. Wang K et al. Quercetin induces protective autophagy in gastric cancer cells: involvement of Akt-mTORand hypoxia-induced factor 1α -mediated signaling. Autophagy. 7.9 (2011): 966-78.

Hepatoprotective

- 30. Alia M et al. Quercetin protects human hepatoma HepG2 against oxidative stress induced by tert-butyl hydroperoxide. Toxicol Applied Pharmacol 212.2 (2006): 110-118.
- 31. Peres W et al. The flavonoid quercetin ameliorates liver damage in rats with biliary obstruction. J Hepatol 33.5 (2000): 742-750.
- 32. Yao P et al. Quercetin protects human hepatocytes from ethanol-derived oxidative stress by inducing heme oxygenase-1 via the MAPK/Nrf2 pathways. J Hepatol 47.2 (2007): 253-261.

Antidiabetic

33. Machha A et al. Quercetin, a flavonoid antioxidant, modulates endothelium-derived nitric oxide bioavailability in diabetic rat aortas. Nitric Oxide 16.4 (2007): 442-447.

Prevention of Bone Loss

- 34. Notoya M et al. Querecetin, a flavonoid, inhibits the proliferation, differentiation, and mineralization of osteoblasts in vitro. Eur J Pharmacol 485.1-3 (2004): 89-96.
- 35. Son YO et al. Quercetin, a bioflavonoid, accelerates TNF-(alpha)-induced growth inhibition and apoptosis in MC3T3-E1 osteoblastic cells. Eur J Pharmacol 529.1-3 (2006): 24-32.

Dosing

36. PDRHealth [online]. Thomson Healthcare, 2005. <u>http://www.pdrhealth.com</u> (accessed 04-02-06).

Food Sources

- 37. Duda-Chodak A. The inhibitory effect of polyphenols on human gut microbiota. J Physiol Pharmacol. 63.5 (2012); 497-503.
- Harwood M et al. A critical review of the data related to the safety of quercertin and lack of evidence of in vivo toxicity, including lack of genotoxic/carcinogenic properties. Food Chem Toxicol (2007): 45:2179-2205.
- 39. Somerset SM, Johannot L. Dietary flavonoid sources in Australian adults. Nutr Cancer 60.4 (2008): 442-449.

Adverse Effects

- 40. Giuliani C et al. The flavonoid quercetin regulates growth and gene expression in rat FRTL-5 thyroid cells. Endocrinology 149.1 (2008): 84-92.
- 41. Lamson DW, Brignall MS. Antioxidants and cancer. Part 3: quercetin. Altern Med Rev 5.3 (2000): 196-208.

Pharmacokinetics

42. Cai X et al. Bioavailability of quercetin: problems and promises. Curr Med Chem. 2013 20: 2572-2582.